Continuous-action reinforcement learning with fast policy search and adaptive basis function selection
نویسندگان
چکیده
As an important approach to solving complex sequential decision problems, reinforcement learning (RL) has been widely studied in the community of artificial intelligence and machine learning. However, the generalization ability of RL is still an open problem and it is difficult for existing RL algorithms to solve Markov decision problems (MDPs) with both continuous state and action spaces. In this paper, a novel RL approach with fast policy search and adaptive basis function selection, which is called Continuous-action Approximate Policy Iteration (CAPI), is proposed for RL in MDPs with both continuous state and action spaces. In CAPI, based on the value functions estimated by temporal-difference learning, a fast policy search technique is suggested to search for optimal actions in continuous spaces, which is computationally efficient and easy to implement. To improve the generalization ability and learning efficiency of CAPI, two adaptive basis function selection methods are developed so that sparse approximation of value functions can be obtained efficiently both for linear function approximators and kernel machines. Simulation results on benchmark learning control tasks with continuous state and action spaces show that the proposed approach not only can converge to a near-optimal policy in a few iterations but also can obtain comparable or even better performance than Sarsa-learning, and previous approximate policy iteration methods such as LSPI and KLSPI.
منابع مشابه
RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملGuided exploration in gradient based policy search with Gaussian processes
Applying reinforcement learning(RL) algorithms in robotic control proves to be challenging even in simple settings with a small number of states and actions. Value function based RL algorithms require the discretization of the state and action space, a limitation that is not acceptable in robotic control. The necessity to be able to deal with continuous state-action spaces led to the use of dif...
متن کاملModel - based Direct Policy Search ( Extended Abstract ) Jan
Scaling Reinforcement Learning (RL) to real-world problems with continuous state and action spaces remains a challenge. This is partly due to the reason that the optimal value function can become quite complex in continuous domains. In this paper, we propose to avoid learning the optimal value function at all but to use direct policy search methods in combination with model-based RL instead.
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملReinforcement Learning in Continuous Action Spaces through Sequential Monte Carlo Methods
Learning in real-world domains often requires to deal with continuous state and action spaces. Although many solutions have been proposed to apply Reinforcement Learning algorithms to continuous state problems, the same techniques can be hardly extended to continuous action spaces, where, besides the computation of a good approximation of the value function, a fast method for the identification...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft Comput.
دوره 15 شماره
صفحات -
تاریخ انتشار 2011